A UBE2O-Ampkα2 Axis That Promotes Tumor Initiation and…

UBE2O is localized in the 17q25 locus, which is known to be amplified in human cancers, but its role in tumorigenesis remains undefined. Here we show that Ube2o deletion in MMTV-PyVT or Tramp mice profoundly impairs tumor initiation, growth…
Neobsahuje seonuzcMusí obsahovat seonuzc

(PDF) Finite Rank Bratteli Diagrams: Structure of Invariant…

We consider Bratteli diagrams of finite rank (not necessarily simple) and ergodic invariant measures with respect to the cofinal equivalence relation on their path spaces. It is shown that every ergodic invariant measure (finite or
Neobsahuje seonuzcMusí obsahovat seonuzc

co si myslí evropští muslimové? | Datalyrics

Jak se vyvíjí nejen to, co si muslimové myslí, ale i co o jejich postojích víme
Neobsahuje seonuzcMusí obsahovat seonuzc

Enrichment of human nasopharyngeal bacteriome with bacteria…

Konecna et al. BMC Microbiology (2023) 23:202
Neobsahuje seonuzcMusí obsahovat seonuzc

(PDF) Bratteli diagrams in Borel dynamics

Bratteli-Vershik models have been very successfully applied to the study of various dynamical systems, in particular, in Cantor dynamics. In this paper, we study dynamics on the path spaces of generalized Bratteli diagrams that form models…
Neobsahuje seonuzcMusí obsahovat seonuzc

Google Jobs API

Scrape job listings, company details, salary estimates, and more. Receive structured results in JSON format. Start with a free plan today!
Neobsahuje seonuzcMusí obsahovat seonuzc

Dynamik Invest

Telephone: (0732) 6596-25314 Fax: (0732) 6596-25319 www.kepler.at
Neobsahuje seonuzcMusí obsahovat seonuzc

GitHub - Caedin/TimeSeriesEncoder

Contribute to Caedin/TimeSeriesEncoder development by creating an account on GitHub.
Neobsahuje seonuzcMusí obsahovat seonuzc

(PDF) Invariant measures for Cantor dynamical systems

This paper is a survey devoted to the study of probability and infinite ergodic invariant measures for aperiodic homeomorphisms of a Cantor set. We focus mostly on the cases when a homeomorphism has either a unique ergodic invariant measure…
Neobsahuje seonuzcMusí obsahovat seonuzc
What explains the significance of Bratteli diagrams in invariant measure study?Bratteli diagrams facilitate the computation of invariant measures, as they clarify properties and structures of transformations, making their analysis more transparent compared to direct study of Cantor systems.
How are extreme points of M(X,φ) characterized?The set E(X,φ) of extreme points consists of ergodic measures, and can have cardinality of any positive integer, denoted by k, or be countably infinite or continuum, as detailed in ergodic theory.
What conditions determine unique ergodicity in Cantor systems?Unique ergodicity occurs when the cardinality of ergodic measures |E(X,φ)| equals 1, which can be analyzed via properties of stochastic incidence matrices associated with Bratteli diagrams.
Při pokusu o sdílení polohy došlo k chybě
Více informací
odkazuje na služby nejen od Seznam.cz.

© 1996–2025 Seznam.cz, a.s.